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The stringy lattice models 
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Department of Physics, Tokyo Metropolitan University, Setagaya-ku, Tokyo 158, Japan 

Received 23 April 1990 

Abstract. We propose a stringy lattice model as a natural generalization of the usual lattice 
model, which is parallel to a generalization from point particle theory to string theory in 
particle physics. We examine several examples, one of which describes a non-ideal gas of 
strings, which changes to string liquid at some boiling temperature. As a most important 
example we study the light cone string field theory. We make a lattice version of it and 
study its properties as a statistical model. It can be regarded as a very high-dimensional 
statistical model in which mean-field approximation is powerful. The long string sector is 
shown to be dynamically trivial and the low curvature strings are statistically favoured. 

1. Introduction 

Lattice models are now of great interest to researchers in various fields of physics and 
mathematics. Fields concerned are the study of computer experiments in gauge theory 
and some statistical systems and the study of constructive field theory and exactly 
solvable lattice models. Studies of the latter topic are now of special interest since 
many unexpected connections to other fields such as conformal field theory, theory of 
knots and links, Chern-Simons theory, theory of quantum groups, theory of elliptic 
functions, etc have been discovered so far. 

In this paper we try to generalize the lattice models naturally in the following way. 
Let us prepare a square lattice first. In the usual lattice models we place a dynamical 
variable on each site or link of the lattice, for the Ising case the variable a, for each 
site x. Because the variables are placed locally, we call these ordinary models ‘point-like 
lattice models’. 

This time we consider the set of all the loops drawn in the square lattice. For each 
loop X,  we place the dynamical variable ax. As usual in order to define the Hamiltonian 
based on the concept of nearest neighbours ( N N )  the definition of N N  in the set of 
loops is needed. Taking some definition, we set the Hamiltonian as 

H = - . I  axay (1.1) 
(X, Y) 

where X and Y are loops, ( X ,  Y )  indicates that X is a N N  of Y. ax is a dynamical 
variable taking the values i l  and J is a coupling between two loops. Given the 
Hamiltonian as above the partition function is defined as 

Z(P)  = c exp[-PH(config)l 
config 

where the configuration is specified if we assign $1 or -1 for every loop X .  

t Name changed from Hideyuki Kat0 to avoid confusion with many Kato’s. 
$ E-mail address: a80485@tansei.cc.u-tokyo.ac.jp 
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Since a point x of U, in the usual Ising model has now been generalized to a loop 
X of U,, we call this kind of model the ‘stringy lattice model’. This kind of extension 
of the point-like model is possible in most cases. We study several examples of this 
kind and apply it to the study of string field theory in this paper. In the next section 
we give a precise definition of a stringy Ising model, and study it in detail. It will be 
shown that some truncated version of it is reduced to the usual Ising model, so exactly 
solvable in 2 ~ .  Furthermore using the lattice gas picture, this system is shown to 
describe a non-ideal gas of strings so it changes to a string liquid at some boiling 
temperature, Some interesting features are found in the loop-loop correlators in this 
system. In section 3, we will investigate the lattice light cone string field theory as a 
typical example of the stringy lattice models. Although the problem of the continuum 
limit is not accessed, we will reveal several important properties inherent in this model. 
First of all this theory is shown to be regarded as a very high-dimensional point-like 
lattice model in which mean-field approximation is powerful. One interesting con- 
sequence of this model is the fact that strings longer than some critical length are 
dynamically trivial. Furthermore it is pointed out that low curvature strings have a 
much larger value of the critical length. Possible application of the mean-field applica- 
tion is discussed therein. The reader interested in only the application to string field 
theory can pass on to section 3. In section 4, we will present a somewhat exotic model 
of the stringy lattice model. This is actually defined in ZD and shown to be equivalent 
to the six-vertex model. In section 5 we conclude this paper. 

2. Stringy Ising model 

2.1. Introduction 

First of all let us prepare a D-dimensional ( D  2) square lattice r whose size is finite. 
Let 2; denote the set of all the loops on r. Degenerate loops which go through the 
same link more than once are also included in 9;. Given a loop X in 2: we can 
deform one of the links of X as shown in figure 1. We consider this as a fundamental 
deformation?, which always increases the length of the loops by two. Note that a 
fundamental deformation like figure l ( b )  is not an exception of this rule. Based on 
this definition of the fundamental deformation we define the N N  (nearest neighbour) 
of this model as in figure 1. 

(4 (bl 
Figure 1. Examples of the fundamental deformation. 

i This type of deformation was previously used in the study of gauge theory in [ 13. 
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Two loops X and Yare N N  if and only if one of these is the fundamental deformation 
of the other. With this definition of N N ,  the Hamiltonian and partition function of the 
stringy Ising model are defined as (1.1) and (1.2) respectively. Since degeneration of 
loops is allowed, loops concerned i n  (1.1) are of any length, even though we restrict 
r to be finite. This makes the system a little difficult to treat. To catch the feeling of 
what is going on, we temporarily restrict the length of the loops. 

We consider the modcl with its loops restricted to L = 2,4,  , . . , Lo; we call it the 
Lo model in the remainder of this section. As a first tractable example let us discuss 
the Lo = 4 model. Loops involved are those in the first two lines of figure 2. It is easily 
seen that only 21 and 4, interact. Loops 42 to 4, have no effect in the system since 
none of them are the fundamental deformation of 21;  they do not appear in the 
Hamiltonian and we can completely ignore them. 

c L=2 - 
2 .  

4 ’  42 4 3  

6 7  - 
6 ( U  6 1, 

Figure 2. An exhaustive list of loops with length L = 2, 4, 6, ignoring the place and the 
direction in which they are placed. 

Loop 4, is placed at each face on the square lattice r and loop 21 at each link. 
Every 41 has four 2,’s as its N N  and each 21 is shared by neighbouring 4,’s. Thence 
the coupling of the system in 2~ is pictured as figure 3(a) where a circle and a square 
represent loops 2, and 41 respectively and each line represents the existence of the 
coupling between the loops. We cd l  this kind of diagram a coupling lattice in the 
following. 

We will now show, using the well known techniques in lattice models [2], that the 
Lo = 4 model is essentially reduced to the Ising model, therefore exactly solvable in 
D = 2 .  

Let 2,’s be indexed by i an& two neighbouring 4,’s of i, by i’ and i”. The partition 
function of L o = 4  model reads 

2(,) = n exp[Kui(ui,+ui, ,)] .  
config i 

where K = J p .  
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Figure 3. ( a )  A coupling lattice for Lo = 4 model. ( b )  A lattice made from ( a )  by removing 
circles in it. 

Summing over a, = il first in the configuration sum, exp[ K a (  a,,+ a,,,)] changes 
to 2 cosh[K(a , ,+a ,  )] which is rewritten as R exp[Aa,.a,,] if we choose A and R as 
R = 2eA, e2* = cosh 2K. Consequently .z(~) is rewritten as 

r 1 

where 2 M  is a one-dimensional size of the lattice r in figure 3(a ) ,  and the configuration 
sum is taken over spin variables placed on only the squares in figure 3(a).  So the 
lattice is now changed to figure 3(b). If we denote a free energy per unit site by 
( c / ( K ) / p ,  it is derived through a little calculation that 

-1 
( c / ' 4 ' ( ~ )  = lim - In F4) 

s i z e + a  #site 

(2.3) 
-1 
3 

= +IsinS(S) +- ln(4 cosh(2K)). 

Using the equation determining T, of the Ising model sinh(2AJ = 1 [2] (subscript 
c denoting critical values), we now can calculate the T, of the L o = 4  model, as 
cosh(2KJ = 1 +a, this leads to 

J 
0.764,.  . T, = (2.4) 

which is about a half of that in the Ising model, T, = J/0.440 . . . . This result is naively 
anticipated on sight of the coupling lattice in figure 3(a) .  Since the coupling is loose 
in this model compared to the Ising model, we need to lower the temperature to form 
a long-range order so that T, is lower now. 

Now we go on to the Lo = 6 model in which the length of loops are restricted from 
two to six. In this case the loops 65 to 611 in figure 2 are completely irrelevant as were 
4* to 44 in the Lo = 4 case. The new feature now is that the system separates to two 
mutually non-coupling sectors, one of which consists of 2, ,  4,, 61 and 62 ,  the other 
consists of 42, 43, 44, 63 and 64. 

Consider the first sector; there arises another new feature that 62 is also irrelevant 
in the calculation of the partition function although it appears in the Hamiltonian. We 
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postpone the presentation of the reason for this for a while, it will be given in a more 
general framework later. To make the coupling transparent, we form the coupling 
lattice first to get figure 4(a). This first sector of the L o = 6  model also essentially 
reduces to the Ising model through the same discussion as for the Lo = 4 model, so 
the dimensionless free energy is written as 

$(6)91(K) = 1 4 ~ " ' " ~ ( 2 K * )  -$ln(16 cosh(2K)) (2.5) 

where e2K* = cosh 2 K ,  and superscript I indicates the first sector. T, is calculated as 
cosh2(2K,) = 1 +a (see the equation just above (2.4)), leading to T, = J/0.495 . . . . 
This value is between that of the Ising model and that of the Lo = 4 model. 

The second sector of the Lo = 6 model is a little complex. The coupling lattice of 
it is shown in figure 4(b), where an open circle, a triangle, an open square, a solid 
square and a solid circle denote 42, 43, 63, 64 and 44, respectively. 

We cannot solve it exactly, but we can naively expect that the critical temperature 
of the system is higher than that in the Ising model because the coupling lattice of it 
is tighter now. 

Those systems discussed so far in fact have fairly good physical interpretation 
provided we use the lattice gas picture [2,3] known in the usual Ising model. Let us 
review it shortly. 

Consider a gas composed of molecules interacting through the Lennard-Jones 
potential 

where E, ro are constants. Idealizing this by a square-well potential 
for 0 s  r G  ro 

4 ( r ) =  - E  for r o c  r G  rl (2.7) ('g otherwise 

and replacing a continuum space by a fine lattice does not affect the qualitative feature 
of the system. Let si denote the number of molecules in a lattice site i. Then the grand 

(a i  (hi 

Figure 4. ( a )  A coupling lattice for the first sector of Lo = 6 model. A square, an open 
circle and a solid circle represent the loops 4 , ,  2 ,  and 6 , ,  respectively. ( b )  A coupling 
lattice for the second sector of Lo = 6 model. 
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canonical partition function of the system reads 

z = ~ e x p [ P ( n ~ -  ( h J )  + l J s Z s J ) ]  

where the interaction energy is $,J = 1 only if i is a N N  of j and zero otherwise. 
n = s, + . . . + sN is the total number of particles with N being the total number of sites. 

is a chemical potential. We have ignored the contribution from the kinetic part 
which is separated individually so it only has smooth dependence on p. s, assumes 0 
or 1 due to the presence of the hard core of the square well potential. 

If we use the relation ui = 2s, - 1, 2 can be rewritten as 
r 1 

Z = C ”  e x p l P J  u,u,++PHCu, 
config ( k J )  

with some constant C. Correspondingly this provides us with 

p = &( 1 + M (  H ) )  
1 

P = -DJ+ H -- i,!~ 

P 
(2.10) 

etc, where p, P are the density and pressure of the fluid, respectively, and D denotes 
the dimensionality of the space where the gas is placed. H is an external magnetic 
field and M is magnetization. 

We can easily recognize, from the first expression displayed above, that the discon- 
tinuous change of magnetization M ( H )  from -MO to MO at Tb lower than T, corre- 
sponds to the discontinuous decrease of the density at Tb with pressure fixed in the 
gas picture. So this surely describes the phase change from gas to liquid (first order 
with respect to H ) .  Tb is nothing but a boiling temperature. This story generalizes to 
the stringy case without any obstacles. 

Now we consider the string gas; strings are attracting each other if two loops are 
just about close enough to degenerate each other, but they cannot degenerate exactly 
due to the hard core of the square well potential. (Make sure not to confuse these 
strings with those appearing later in the framework of string field theory.) For instance 
the Lo = 4 model describes the situation that the L = 2 and L = 4 loops are interacting 
through that potential, and at T b  the string gas condensates to the string liquid. In the 
case of the Lo = 6 model, which is composed of two decoupled fluids, the boiling 
temperatures are different from each other. If we lower the temperature the second 
sector condensates to liquid first, then comes the first sector. 

Next consider the general case Lo model. This time we start a sufficiently low 
temperature in which all the loops are in the liquid phase. The fluid may be composed 
of several mutually non-interacting components, each of which has a different boiling 
temperature. Which component of loops begins to boil first? The answer is the sector 
containing regular, long loops. The reason follows now. The longest loops can only 
interact with the loops shorter by two (not longer by two), so they have fewer partners 
to couple in general, especially if they are regular, where regular means that they have 
fewer convexes and concaves. This situation is most conveniently exhibited by a picture 
shown in figure 5 which represents the example of the Lo= 12 case. All the loops in 
figures (a),  ( b ) ,  ( c )  are the longest loops but figure ( b )  has only one N N  and figure 
(a )  has none, therefore the coupling lattice is quite loose leading to low Tb, As the 
convexes and concaves increase as in figure (c), the number of partners of it increases 
and the coupling lattice becomes tighter to raise the boiling temperature. 
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(ai ib i  i cJ  

Figure 5. Examples of the I-loop (longest loop) in the Lo= 12 model. ( a )  is more regular 
than ( b ) ,  and ( b )  is more regular than (c ) .  

So, the physical picture of the general Lo model is that as we increase the temperature 
the string liquid experiences boiling at many Tb's before everything boils up. 

Let us consider here the behaviour of the Lo model in the limit Lo CO. In this 
situation it is expected that the boiling temperatures of all the sectors become higher, 
and diverge as Lo tends to infinity since the coupling lattice becomes tighter. 

On the other hand it is generally expected that mean-field approximation becomes 
exact for the sufficiently-high-dimensional lattice models. In fact, in the square lattice 
Ising model, it is known that critical exponents take the value calculated by the 
mean-field approximation for any 0 2 4  [4]. (It has been proved [5] that ( D 2  
2) -dimensional Ising models experience second-order phase transition with respect to 
j3 at finite T,, irrespective to the value of D.) 

An important lesson presented by the study of point-like lattice models is a concept 
of effective dimension [2]. In the regular D-dimensional lattice, the number of sites 
reached by n steps from some fixed site is proportional to nD. Conversely for a given 
lattice, if that number - n D, we say that the effective dimension of the lattice is D. The 
effective dimension accounts for how many sites, around one site, influence the site. 
It is naively recognized that if the effective dimension is large, mean-field approximation 
becomes exact and the system goes into the classical region in which critical exponents 
take the values determined by the mean-field approximation, i.e. v = 0, ,B = i, y = 1, 
7 = 0, etc. 

If Lo is large enough, each sector of the Lo model is regarded as a high-dimensional 
Ising model as is clear from its coupling lattice. So it is a natural expectation that the 
Lo model has second-order phase transition, belongs to the universality class of classical 
region and T, is high but finite if Lo is. 

2.2. Loop-loop correlation 

Now we see interesting new features found in the loop-loop correlators. Consider the 
Lo model. We refer to the longest loops ( L  = Lo) as 1-loops and the others as s-loops. 
We remark that since the number of loops expands exponentially in length L, I-loops 
are the majority in number. 

Suppose we calculate the partition function 
Now we try to classify 1-loops. 

(2.11) 

Concentrate on the contribution from the 1-loops, namely terms Kuxu, with Y :  1-loop 
and X :  s-loop. If Y is not the fundamental deformation of any s-loops X ,  then uY 
does not appear in the Hamiltonian. This kind of 1-loop is called an ignored loop. For 
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Kuxuy to be non-zero, the difference between X and Y must be some face a as shown 
in figure 6(a) .  We denote this situation by Y - X = a. Then develop the high- 
temperature expansion [2] using exp(Kuxuy) = cosh K + uxuy sinh K ,  

Y :  I-loop c = n e x p [ ~  X - Y = a  c uxuy] 

=(coshK)"  n n (l+UUxay) 
a X - Y = a  

= ( c o s h K ) " n ( l + u  a xo- 1 Yo=a a x o u y o + ~ 2  x,- 1 Y, = a uxouyo~xIuy,+... ) 
(2.12) 

where U = tanh K and n is the number of pairs ( X ,  Y) such that X - Y = a. When 
there is only one X which satisfies X - Y = a for a fixed Y, it is at most once that uy 
appears in each product uxo . . . U y,  in the summand. Thus summing over uy = *l 
erases the terms which contain uy so we can ignore such loops from the begining in 
the calculation. 

The I-loop Y which contributes to the calculstion must satisfy the following 
property. There exist s-loops X ,  X '  and faces a, a' such that 

x - Y = a  X ' -  y =  x # X ' .  (2.13) 

Under these conditions a may be equal to a'.  Examples of the a # a' case and a = a' 
case are exhibited in figure 6 ( b )  and figure 7 respectively. Those loops satisfying (2.13) 
are called dependent loops. The I-loops which are neither ignored nor dependent are 
called independent loops. 

Now the partition function is reduced to 

z = C" exp[K E' uxay] 
config 

(2.14) 

with C' being some constant and N being the number of independent loops. Z' is over 
all the loops whose length are less than or equal to Lo and the I-loops involved are 

( b )  

Figure 6. ( a )  A picture representing X - Y = CY. ( b )  One example of a dependent loop in 
the case CY # CY'. 
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(4 ( b )  i C) 

Figure 7. An example of a dependent loop in the case cy = cy'. 

dependent. Let us consider a specific example. Take the Lo = 4 model, which is indeed 
quite simple. One L = 4 loop is of the type in figure 7 (dependent) and the others all 
ignored. Then comes the Lo = 6 model. 6 ,  is clearly a loop of the type in figure 6( b ) ,  
and now we can understand why we could ignore 62, which was actually an independent 
loop. This concludes the first sector. 

Next in the second sector two 1-loops 6 3 ,  64 are of the type in figure 7 and the 
others are ignored loops. We can make the general remark that even though an 
independent loop 62 can be ignored in the calculation Z, it cannot be forgotten in the 
calculation of correlators. We use a notation U& for the spin variable on the loop 6 ,  
placed at x with i being an index specifying the direction in which the loop is placed. 

We show in the following that all the correlators are calculated from the correlators 
involving short and dependent loops only. First we try to calculate the correlator of 
u&uk, using the technique of high temperature expansion. Note that 62 is an indepen- 
dent loop. Now the term containing U% which vanished in the calculation of Z no 
longer vanishes due to the presence of one more U:; in front of the Boltzmann weight. 
This results in 

(U:!/&) = u(a;:u;,l) (2.15) 

where U = tanh PJ. 
For higher correlators we only have to make a replacement 

U% + u:l tanh PJ. (2.16) 

Because an independent 1-loop has an unique s-loop as its N N ,  we call it a conjugate 
s-loop. Then the general rule is stated that all the correlators are obtainable by the 
correlators involving only s-loops and dependent loops. To calculate the correlator 
involving independent loops we only have to make the replacement 

(2.17) 

This result clarifies the behaviour of the independent loops. In high temperature P + 0, 
independent loops (such as 62 in the Lo = 6 model) are completely unseen since all 
the correlators containing it vanish, but in the lower temperature /3 + 1, they behave 
exactly as their conjugate s-loop. Note that this interesting property is valid for any 
Lo models. 

Next we investigate more closely the Lo = 4 model and the first sector of the Lo = 6 
model in two dimensions in order to check how their reductions to the Ising model 
are complete. Since the two models are essentially the same we only discuss the former. 

We have previously reduced the calculation of 2 of this model to the Ising model. 
We now try to calculate its correlators. Since the variables 0 4 , s  are independent of the 

(independent 1-loop) + (conjugate s-loop) tanh PJ. 



4360 H Ca^teau 

reduction, correlates between 4,’s are written as 
(a4,lC;,l) = ( v x 7 y ) I s i n g  (2.18) 

where 77, is a usual Ising spin variable placed on sites of the lattice in figure 3(b). In 
the case where the site 21 is involved it is derived, using the same technique leading 
to (2.15), that 

(2.19) 

where A =fln cosh 2/34 y‘, and y” are two N N  (squares) of y (a circle), see figure 3(a).  
For arbitrary correlators the calculation rule is 

(a$c~t,l) = (T,( vY,+ q-y,,)),sing tanh 2A 

(2.20) 

namely: correlation with 21 can be replaced by correlation with the sum of the two 
neighbouring 4,s, multiplied by tanh 2A. 

We have now found that all the correlators are calculated in the framework of the 
usual Ising model, but it contains an interesting new operator a3 in addition to the 
usual spin. 

3. Light cone string field theory 

In this section we discuss the lattice light cone string field theory as a typical example 
of the stringy lattice model, In order to clarify the discussion we restrict ourselves to 
the closed string theory. Generalization to the open string theory is a straightforward 
task. 

Naive discretization of the theory is given below. However, it is a non-trivial and 
difficult problem as to whether the continuum limit can be safely taken for this lattice 
string theory. Accordingly we restrict ourselves here to the study of the lattice string 
only as a statistical system. If the continuum limit can safely be achieved without 
drastically disturbing properties of the lattice string exposed below, results of the 
following analysis apply to the continuum string field theory. 

Euclidean action of the closed light cone string field theory is given as [6] 

S = d X -  dp+[dX’] I 
+ g  

x @*(xJ,  p - ,  x+ )@(  Y’, q+, x+)@(z’,  r + ,  x’) +cc 

d X t  dp+ dq- dr’[dX’][d Y’][dZ’]G(xvz, 

where 
(3.1) 

@ = @ ( X i ,  p + ,  X’) 

@* = @*(Xi,  p - ,  x-) 
and 
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are string fields; X’(cr) ,  . . . , XDP2(a )  are transverse modes of a string, Xt is a light 
cone time and pt is a longitudinal momentum of a string, G , x y z ,  ensures the right 
connection and the momentum conservation of the three strings, a‘ is a inverse string 
tension. 

Using the same kind of procedure as in the previous sections, the Do= 
( D  - 2)-dimensional loops can be naturally discretized as follows. We first change the 
continuous Do space (for transverse mode) to a square lattice whose spacing is equal 
to a. Recall that 5 [dX] means the sum over all the loops in R D ~ .  On the discretization 
of Do-dimensional space we discretize the loops in the space so that they only run 
through the links of the lattice (see figure 2). 

Now all the discretized loops must be summed up in order to give a lattice action. 
Let us note that degenerate loops in which the same link is run through more than 
once are not excluded, since those loops naturally appear throughout the discretization 
of a functional differentiation discussed later. 

Now the discrete loop X(a)  made of L = L(X)  links (which we call the L sector) 
are parametrized with a, = (I/ L)i  ( i  = 0, 1, , . , , L - 1) with I = 27rp’. Therefore the 
loops in the L sector have 2D0L directions for the fundamental deformation because 
each link can be deformed in 2D0 directions. This implies that X has just 2D0L nearest 
neighbours. This means that in the vicinity of the loop X with L(X)  = L, the dimension 
of the loop space is given as DOL. 

Therefore [dX] in the L sector is represented as aDoL upon the discretization. So 
we rescale the field as 

4 X  (3.2) ~ ( x )  = a - D 0 U X ) / 2  

to cancel this volume factor in the lattice action. If CP did not have this kind of 
dependence on L, large L sectors would quickly collapse or diverge due to the volume 
factor which reduces the system to a trivial one. It is clearly true that all the 
bilinear terms of @ are saved by that rescaling, but it is amazing that the trilinear 
interaction term is also the case. The functional integration joining the three strings 
erases G ( x y z ) ,  [dY] and [dZ]. The remaining [dX] gives a D ~ L ( X )  and trilinear CP fields 

L( Y) + L ( Z ) ,  the powers of a sum up to zero. This means that the CP3 interaction also 
survives the rescaling mentioned above without collapse or divergence. This property 
is kept even if we take the vertices, including open strings which are trilinear or 
quadrulinear in CP, into account. The reason is that the sum of lengths of loops is 
always conserved. 

The action contains a functional derivative, and the differentiation with respect to 
a loop implies an infinitesimal deformation of the loop changing their length while, 
as is seen from (3.2), the factor a-DoL(x)’2 is essentially responsible for a reaction of 
@ under an infinitesimal change of the length of X. Thus in order to take care of the 
derivative term we actually carry out the rescaling of the field before the discretization. 
Regarding a to be a free parameter first, insert (3.2) into the second term in (3.1), 
which leads to 

give a-DoL(x)’2 U -DoL(Y)’Za-DoL(Z)’2. Recalling the string connection condition L( X) = 

where K =( -Do  In a ) i ( X ) / ( 2 a )  with i ( X )  = a L ( X )  being the true length of a loop 
X. On the discretization, a is identified as a lattice spacing at which e2K is cancelled 
with [dX]. 
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To begin with we see the outline of the discretization of the last term of (3.3).  We 
recall that the discretization of a Laplacian term for the usual D-dimensional point 
particle field theory, i.e. dDx dic$(x)di4*(x), gives 

(3.4) 

with x and y running through the lattice points. The second sum is over all the N N  in 
ZD. Similarly discretization of the last term of (3 .3)  which is a generalization of 
Laplacian is considered to give 

for each L sector, where ( X ,  Y )  denotes the N N  in the sense of loops. We remark that 
the N N  here now include the types as in figure 8, so as to take into account the 
deformation along a loop. These are not discarded since we have already solved the 
constraint erasing longitudinal oscillation. 

1 

I J 

Figure 8. Fundamental deformations along the loop itself. 

Now we consider (3 .5)  more carefully. The functional differentiation we now 
consider is represented by 

(3.6) 

with e, being a unit vector along the j axes. To carry out the discretization of the 
right-hand side of the above equation, we first change the delta function to a regularized 
one, h , ( a ) ,  which is defined as h , ( a )  = L/Z if u I s  a < ~ ~ + , ( u ~ + ~ - u ~  = Z / L ) ,  otherwise 
zero. Then the discretization of (3.6) is given as 

( 4 x w + f e , h , b r  4 X d / t  = ($x,,-  4 X ) / ( W L ) .  (3.7) 
We now have t equal to t = l a /  L (small) so as to let X ( u )  + te,h,(a) be equal to XI, 
which is defined to be a loop obtained by shifting a link i, i + 1 in the direction of j t h  
axis by just one lattice unit. X, ( i  = 0, 1,  . . . , L;  j = 1,2, . . . , Do) form NNS of X having 
length L(X) + 2. 

Next we calculate Si(X)/SX(u) which is in the first and second term in (3.3). 
This functional differentiation can be carried out explicitly recalling i ( X )  = 
f d u  to give 

S i ( X )  (X‘ * X”)X” X’” 
GXJ(u) - IX’13 IX‘I ‘ 

-- -- (3.8) 

This expression, evaluated at u = ui, is equal to (4L(X)/Za)oxij where wxlj = 1(-1) 
only if (+=ai is a corner of the discrete loop X, and the vector X(ai)-X(ui- , )  is 
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(anti-)parallel to the j th  axis respectively, otherwise zero. This implies that 
d ( X ) /  S X ( a )  gets contributions only where the loop has concentrate; curvature (in 
other words at a corner). This can easily be understood if we notice that 6 L ( X ) /  S X ( u )  = 
0 is an equation for a geodestic curve. 

After these calculations, the last term in (3 .3)  turns into 

where the sum of i and I /  L is derived from 5 du. Writing down the final result for the 
lattice version of full theory requires further notation. There is a possibility that two 
or more of XV's for different ( 9 )  accidentally meet since we include the degenerate 
loop. Thus we define the quantity deg(X, Y )  as the number of X ,  such that X,= Y 
for fixed X and Y,  moreover we define v ( X )  as a sum of deg( Y ,  X )  for all NN. Y of 
X shorter than X by two. Let note that, for the generic loop, deg(X, Y) is of the order 
of 1 ;  however for the most degenerate loop deg(X, Y )  is proportional to L ( X ) .  

The first term of (3.3) creates the quantity 

1 - c wzx,, =- (the number of corners of X ) .  w x = -  2 1  

L ( X )  L ( x )  ',I 
(3.10) 

- 
A generic loop, in which the number ofcorners is proportional to L, has 0% - 1 ,  on 
the other hand a low curvature loop as w ;  - 0. Furthermore we set w ( X ,  Y )  = wv for 
Y = X , ,  and w ( X )  is defined to be a sum of deg( Y, X )  x w (  Y, X )  for all N N  loops Y 
shorter than X by two. This concludes the discussion on the discretization of the 
second term of (3 .1 ) .  

Lastly we shall also change x *  = xo* xD-' directions to lattices of spacing a and 
size M leading to the discretization of the momentum pt = (25-/Ma)k,  k = 0,1,2,  . . . . 
We express 4 X , p + = ( 2 n / M a ) k , X + = l a  as c$X,k,l in the following, but suppress unimportant 
arguments for simplicity. 

The third term in (3 .1 ) ,  ( d X ' ( c ~ ) / d a ) ~ ,  is easily discretized to ( u / ( I / L ) ) ~ ,  and the 
first and the last of (3.1) are also easily discretized. 

We finally get the following expression of a lattice action 3. 

(3.1 1 )  

The most important feature of this statistical model is that this is a very high- 
dimensional statistical model with non-nearest-neighbour interaction. In the high- 
dimensional lattice model the mean-field approximation is quite a powerful method. 
For example, the universality class of a high-dimensional lattice model is a trivial one 
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determined by the mean-field approximation, which is known from the renormalization 
group analysis [4]. One possible discussion, applying the mean-field approximation, 
is presented at the end of this section. 

We now see that the long string sector is dynamically trivial and the low curvature 
sector is statistically favoured. Suppose that we take a configuration sum (path integral) 
with sources 

(3.12) 

with only the free part of the action go. The exponential factor getermines the Gaussian 
distribution of the field configurations of 4Xkl’S. In sight of So in (3.11), we find that 
as X gets longer, the coefficients of th,e square terms in go increase a s F 2  while those 
of the cross terms at most linear in L. Thence for sufficiently large L ( X ) ,  standard 
deviations and average values of d X  distribution are vanishing, i.e. d X  is sharply 
concentrated at zero. This allows us to trivially integrate out these degrees of freedom. 
Let us achieve this below. 

First, sectors with different k’s are not coupled in 3 so that Z, can be written as 
zo=nkzO,k. Here we discuss the generic case in which$- 1, ? ( X )  - Land o ( X )  - L. 
If we assume the lattice s p a c i x a  is small, the dominy t  coefficient of 14x12 is the 
first one, ( a f /8~a4) (4Do  In a) ’o$ i2 .  The critical length L, above which the integration 
is trivial is determined by equating this and a’.rrk/Mu:or ( a f / 8 7 r a 3 ) i  assuming deg - 1. 
The greater value of f, is given by the former. This L, is proportional to a. For later 
convenience we make a safer choice. We actually integrate 4X on loops longer than 
i , ( k )  defined as 

1 Xkl exp - j O +  ( 4 X k l J ~ k l + 4 % k l J X k l  zo(J, J*) = I n d4Xkl d 4 *  
Xkl [ Xkl 

for 0 s  k s  ko 
for ko< k i,( k )  = { t i + B k  (3.13) 

with suitable positive constants Ao, A, B and ko. We call the loops longer than i , ( k )  
long loops, and call the others short loops. 

After the integration with respect to 4 X k l  for long X ,  we get 

zO(J, J*) = exp 1 f X l ;  Yl’ ,kJXklJ$kl ’ ]  ZO,short(J, J*)* (3.14) 

C is a divergent quantity independent of J,  and the last factor contains short loops 
only. Coefficients f are nothing but the propagators between the two loops. The values 
quickly decay a s f -  exp[ - y n ]  where n symbolically represents the differenlce between 
two loops. For the time direction, n = I I  - I f )  and y - In{[ M ( D o  In a)’/  ku*]L(X)’} .  For 
the transverse space direction, n is the number of fundamental deformations to reach 
Y from X and y-ln[(Do In a ) l / a ] e ( X ) ] .  So the longer loops described by 4Xkl will 
be quickly decoupled because L ( X )  gets greater. 

So far we have only been concerned with the free part. Let us switch on the (P3 
interaction. Using the well known formula together with the form of Zo(J, J*) presented 
above, the total partition function is calculated to be 

[long 

Z ( J ,  J * )  = exp[-&,t(a/aJ, ~ / ~ J * ) ] Z , ( J ,  J*) 
r 1 

(3.15) 
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with sint( 4, #*) being the a3 interaction term. Z,,,,(J, J * )  is the full partition function 
(including Q3 interaction) containing 4 and J associated to short loops only. The 
second equality is proved noting the following fact. When a string X separates to Y 
and 2, and X is a long string, namely L , ( k x )  < L(X)  = L( Y ) +  L ( Z ) ,  either Y or 2 
must be long to avoid the contradiction of L( Y )  < L,( k y )  plus L ( Z )  < L,( k z ) .  Therefore 
at least two of the differential operators in (d/dJ%)(d/dJy)(d/dJx)  is the one associated 
to a long string. Thence after the commutation of this operator with the second factor 
of the second line in (3.14), there survives at least one differential operator associated 
to a long one which vanishes when acting on Z,,,,. This tells us that the long-loop 
sector suffers no effects from (P3 interaction. Thus we have arrived at the result that 
the long strings are dynamically trivial in the full theory. This fact is consistent with 
the naive expectation. Since the action (3.1) describes the string with constant line 
density l / a ' ,  long strings are highly massive. Thence the above observation is thought 

Let us mention less generic cases. If the curvature of the string is small enough 
and w(X) almost vanish. Thus the dominant term in the coefficient of a squ:re term 
changes to the third or the forth one in the square coefficient. This makes L, much 
longer. Thus we can say that low curvature strings will survive with far longer lengths 
than generic one. This is physically natural because low curvature strings, thought to 
have less oscillation energy, then correspond to a less massive mode than a generic one. 

So far we have argued the case of strings with no drastic degeneracy. For highly 
degenerate strings in which the degeneracies deg(X, Y )  are proportional to the length 
of t)e string one of the coefficients of the cross term deg(X, Y ) i  becomes quadratic 
in L. Thus the average value does not approach to zero as i gets greater, although the 
standard deviation does. It seems to imply the condensation of #x to some value, but 
this natural physical interpretation is not yet reached. 

Before closing this section we present here our aim to explore non-pertubative 
effects in string theory. The action we would like to treat is of the form 

to be the decoupling theorem of higher massive modes. - 

(3.16) 

In this expression A(a) ,  B ( a ) ,  C ( a )  and G ( a )  are, in reality, determined by the 
condition that all the correlation functions remain finite under a + 0. And actually, A, 
B, C and G may depend on the other information such as L ( X ) ,  k, etc, but we neglect 
it here for simplicity. As we noted before, the most significant feature inherent in this 
model is its high dimensionality. Let us pay attention to the second term in (3.16) first, 
for fixed X whose length is L, and which contains the sum over all the N N  Y of X .  
There are many NNS with length L + 2  like a cloud around X ,  so we replace all #$ by 
the same value f * ( L + 2 )  for all Y with L( Y )  = L + 2 .  Similarly we replace 47+, by 
f * ( L ) ,  and 6 ? , k ' # z , k - k '  by f * ( L ' ) f * ( L -  L'). Then we are left with 

+ 2 G ( a ) # x f * ( L ' ) f * ( L - L ' ) + c ~ ] .  (3.17) 

Now the integral I Il d#%kl exp[-s] is easily achieved, since it is simply a product 
of non-coupled Gaussian integrals. By this procedure free energy F = ( - l / / l )  In 2 is 

k',L' 
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determined as a functional of f(L), F = F [ f ] .  So the minimum condition determines 
the functional form&( L )  which represents the distribution of length of this loop system. 
Moreover if we coupled the external metric G+” in the kinetic term of the original 
action, after some suitable procedure of the discretization, we would be able to get 
the free energy as the functional like F = F[J;  G’””]. This minimum condition is, in 
principle, considered to determine the metric which is actually realized in the world 
of string theory. 

These last comments on the application of mean-field theory are still speculative 
at present and a detailed investigation is now under way. 

4. A different example of the stringy lattice models 

Finally we present a completely different example of the stringy lattice models in 2 ~ .  
This model does not have any constraints on lengths of its loops in a thermodynamic 
limit. Further, this model will be shown to be equivalent to the six-vertex model [2,7]. 

We prepare a 2~ finite square lattice r. We define a loop space 27, this time, as 
a set of all the loops drawn in the square lattice r such that no loops degenerate. Let 
us see what the configuration is. For any loop X E 27 we can assign 1 (excited) or 0 
(non-excited). Some constraints on its configuration are imposed as in the case of 
several point-like lattice models such as vertex models, IRF models, etc. The first 
constraint is that two excited loops cannot share the same links and the second one 
is that any intersecting points of excited loops including self-intersection must be one 
of the types shown in figure 9. 

Then the energy for a given configuration is defined as 

fc i  ( d )  

t 
--\b- 

t de- 
t f 

( p i  (f i 

Figure 9. Allowable types of intersection of loops 



The stringy lattice models 4367 

where 
if X and Y are excited KAA + + ncC otherwise 

Fi(X, Y )  = 

if X is excited 
F A X )  = tAA+nBB+ncC otherwise 

with n A ,  n B ,  n, being the number of intersections between X and Y or X itself of 
the types in figure 9(a, b ) ,  (c, d ) ,  ( e , f )  respectively. This concludes the definition of 
the model. 

Then we find that two arrows go into a site and two arrows come out of a site for 
each site (vertex). This is nothing but a configuration of the six-vertex model [7]. So 
the configurations of our model correspond to those in the six-vertex model in a 
one-to-one manner. Also energy assignment coincides if we choose a, b, c as 

a = sinh( y - e )  = ePPA b = sinh 6 = e-pB c = sinh y = e-pc. (4.2) 

It is well known that the above Boltzmann weight is a solution to the Yang-Baxter 
equation so that the model is exactly solvable. 

We take the case C < A, B. Then the doubly-degenerate ground-state configurations 
are as shown in figure 10 and that shifted by one unit. Some lower excited configurations 
are shown in figure 11. As the temperature goes up, long excited loops increase and 
at some T, the system goes into random phase. 

Figure 10. A ground-state configuration ofthe model 
in the case C < A ,  B. 

Figure 11. An example of a lower excited configur- 
ation. 

Let us make one remark before concluding the section. These types of stringy lattice 
models are found elsewhere. The concept of construction of the above model is actually 
based on the low-temperature expansion of the model, which was, for example, known 
for the Ising model. So we can also regard the Ising model as a kind of stringy lattice 
model in that way. The point is that we cannot regard these types of models as a 
dynamics of strings as in the case of our first model in place of excitation of loops, 
because there is no term corresponding to a chemical potential. 

5. Conclusion 

We have proposed stringy lattice models in this paper. As a first example, the stringy 
Ising model was defined and the simplest truncated version was solved in 2 ~ .  This 
model was fairly well interpreted physically as a string fluid system. Interesting 
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behaviour of the longest loops (I-loop) was found through loop-loop correlators. In 
section 3 we examined the lattice light-cone closed-string field theory as a typical 
model of the stringy lattice models. The problem of the continuum limit was not 
clarified, but only the properties as a lattice model were studied. That system was 
pointed out to be a very high-dimensional point-like lattice model. The analysis has 
shown that the longstring sector was dynamically trivial and that low curvature strings 
are statistically favoured, which were physically natural. One speculation of applying 
high dimensionality to the model was given. In section 4 a somewhat exotic example 
was displayed. It was constructed based on the concept of high- or low-temperature 
expansion of the usual point-like lattice models. A special feature of that kind of model 
was that there was no constraint on the length of the loops. 

This paper only provides us with an initial setting and a little examination in the 
approach to stringy lattice models. There is much to be done in this direction; for 
instance, making the other examples of the stringy lattice models and to investigate 
them. We think we will be able to expose a rich and interesting world through this 
kind of approach as was so in the point-like lattice models. This is because the 
generalization is such a natural one. Also we could carry out a study of =YP. We know 
mathematically interesting structures were found in the usual continuum loop space 
[SI. A parallel discussion seems possible for the discrete version. 

Of all the problems we think the most important one is the application to string 
field theory. This model is regarded as a statistical system with very high effective 
dimension. So this system is in the ideal situation for the application of the mean-field 
approximation. We expect that mean-field approximation will give us a promising 
strategy for the study of the non-perturbative nature of string theory. 
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